3.15 \(\int \frac{1}{\sqrt{-1+\coth ^2(x)}} \, dx\)

Optimal. Leaf size=11 \[ \frac{\coth (x)}{\sqrt{\text{csch}^2(x)}} \]

[Out]

Coth[x]/Sqrt[Csch[x]^2]

________________________________________________________________________________________

Rubi [A]  time = 0.020726, antiderivative size = 11, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 10, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.3, Rules used = {3657, 4122, 191} \[ \frac{\coth (x)}{\sqrt{\text{csch}^2(x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[-1 + Coth[x]^2],x]

[Out]

Coth[x]/Sqrt[Csch[x]^2]

Rule 3657

Int[(u_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Int[ActivateTrig[u*(a*sec[e + f*x]^2)^p]
, x] /; FreeQ[{a, b, e, f, p}, x] && EqQ[a, b]

Rule 4122

Int[((b_.)*sec[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(b*ff)
/f, Subst[Int[(b + b*ff^2*x^2)^(p - 1), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{b, e, f, p}, x] &&  !IntegerQ[p
]

Rule 191

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^(p + 1))/a, x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{-1+\coth ^2(x)}} \, dx &=\int \frac{1}{\sqrt{\text{csch}^2(x)}} \, dx\\ &=-\operatorname{Subst}\left (\int \frac{1}{\left (-1+x^2\right )^{3/2}} \, dx,x,\coth (x)\right )\\ &=\frac{\coth (x)}{\sqrt{\text{csch}^2(x)}}\\ \end{align*}

Mathematica [A]  time = 0.007292, size = 11, normalized size = 1. \[ \frac{\coth (x)}{\sqrt{\text{csch}^2(x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[-1 + Coth[x]^2],x]

[Out]

Coth[x]/Sqrt[Csch[x]^2]

________________________________________________________________________________________

Maple [A]  time = 0.013, size = 12, normalized size = 1.1 \begin{align*}{{\rm coth} \left (x\right ){\frac{1}{\sqrt{-1+ \left ({\rm coth} \left (x\right ) \right ) ^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-1+coth(x)^2)^(1/2),x)

[Out]

coth(x)/(-1+coth(x)^2)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.80586, size = 15, normalized size = 1.36 \begin{align*} -\frac{1}{2} \, e^{\left (-x\right )} - \frac{1}{2} \, e^{x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-1+coth(x)^2)^(1/2),x, algorithm="maxima")

[Out]

-1/2*e^(-x) - 1/2*e^x

________________________________________________________________________________________

Fricas [A]  time = 2.52844, size = 12, normalized size = 1.09 \begin{align*} \cosh \left (x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-1+coth(x)^2)^(1/2),x, algorithm="fricas")

[Out]

cosh(x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{\coth ^{2}{\left (x \right )} - 1}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-1+coth(x)**2)**(1/2),x)

[Out]

Integral(1/sqrt(coth(x)**2 - 1), x)

________________________________________________________________________________________

Giac [A]  time = 1.18787, size = 24, normalized size = 2.18 \begin{align*} \frac{e^{\left (-x\right )} + e^{x}}{2 \, \mathrm{sgn}\left (e^{\left (2 \, x\right )} - 1\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-1+coth(x)^2)^(1/2),x, algorithm="giac")

[Out]

1/2*(e^(-x) + e^x)/sgn(e^(2*x) - 1)